Master the ccna 200 105 Interconnecting Cisco Networking Devices Part 2 (ICND2 v3.0) content and be ready for exam day success quickly with this Exambible 200 105 icnd2 braindumps. We guarantee it!We make it a reality and give you real 105 200 questions in our Cisco icnd2 200 105 braindumps.Latest 100% VALID Cisco ccna routing and switching icnd2 200 105 official cert guide Exam Questions Dumps at below page. You can use our Cisco icnd2 200 105 braindumps and pass your exam.

Q57. - (Topic 2) 

Refer to the exhibit. 

A packet with a source IP address of 192.168.2.4 and a destination IP address of 10.1.1.4 arrives at the AcmeB router. What action does the router take? 

A. forwards the received packet out the Serial0/0 interface 

B. forwards a packet containing an EIGRP advertisement out the Serial0/1 interface 

C. forwards a packet containing an ICMP message out the FastEthemet0/0 interface 

D. forwards a packet containing an ARP request out the FastEthemet0/1 interface 

Answer: C Explanation: 

CCNA - EIGRP Common Question http://www.orbitco-ccna-pastquestions.com/CCNA---EIGRP-Common-Question.php 

Looking at the output above, there is no IP route for 10.1.1.4 address on AcmeB routing table. If the router can no find a specific path in its routing table to a particular route,( In this case no path is found so AcmeB) the router will inform the source host with an ICMP message that the destination is unreachable and this will be through the same interface it has received the packet (interface Fa0/0 network 192.168.3.0/28 from the exhibit). 

Topic 3, WAN Technologies 


Q58. - (Topic 2) 

Which two are advantages of static routing when compared to dynamic routing? (Choose two.) 

A. Configuration complexity decreases as network size increases. 

B. Security increases because only the network administrator may change the routing table. 

C. Route summarization is computed automatically by the router. 

D. Routing tables adapt automatically to topology changes. 

E. An efficient algorithm is used to build routing tables, using automatic updates. 

F. Routing updates are automatically sent to neighbors. 

G. Routing traffic load is reduced when used in stub network links. 

Answer: B,G 

Explanation: 

When reading (or being lectured about) all the glorious details of dynamic routing protocols, it's hard not to come away with the impression that dynamic routing is always better than static routing. It's important to keep in mind that the primary duty of a dynamic routing protocol is to automatically detect and adapt to topological changes in the internetwork. The price of this "automation" is paid in bandwidth, security, and maybe queue space, in memory, and in processing time. A frequent objection to static routing is that it is hard to administer. This criticism may be true of medium to large topologies with many alternative routes, but it is certainly not true of small internetworks with few or no alternative routes. References: http://www.ciscopress.com/articles/article.asp?p=24090&seqNum=6 http://www.ciscopress.com/articles/article.asp?p=24090 


Q59. - (Topic 3) 

The command frame-relay map ip 10.121.16.8 102 broadcast was entered on the router. Which of the following statements is true concerning this command? 

A. This command should be executed from the global configuration mode. 

B. The IP address 10.121.16.8 is the local router port used to forward data. 

C. 102 is the remote DLCI that will receive the information. 

D. This command is required for all Frame Relay configurations. 

E. The broadcast option allows packets, such as RIP updates, to be forwarded across the PVC. 

Answer:

Explanation: 

The command frame-relay map ip 10.121.16.8 102 broadcast means to map the remote IP 

10.121.16.8 to the local DLCI 102. When the “broadcast” keyword is included, it turns Frame Relay network as a broadcast network, which can forward broadcasts. 


Q60. - (Topic 2) 

Which type of EIGRP route entry describes a feasible successor? 

A. a backup route, stored in the routing table 

B. a primary route, stored in the routing table 

C. a backup route, stored in the topology table 

D. a primary route, stored in the topology table 

Answer:

Explanation: 

http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080093f07.shtml 

Feasible Successors A destination entry is moved from the topology table to the routing table when there is a feasible successor. All minimum cost paths to the destination form a set. From this set, the neighbors that have an advertised metric less than the current routing table metric are considered feasible successors. Feasible successors are viewed by a router as neighbors that are downstream with respect to the destination. These neighbors and the associated metrics are placed in the forwarding table. When a neighbor changes the metric it has been advertising or a topology change occurs in the network, the set of feasible successors may have to be re-evaluated. However, this is not categorized as a route recomputation. Feasible successor is a route whose Advertised Distance (AD) is less than the Feasible Distance (FD) of the current best path. A feasible successor is a backup route, which is not stored in the routing table but, stored in the topology table. 


Q61. - (Topic 2) 

When a router undergoes the exchange protocol within OSPF, in what order does it pass through each state? 

A. exstart state > loading state > exchange state > full state 

B. exstart state > exchange state > loading state > full state 

C. exstart state > full state > loading state > exchange state 

D. loading state > exchange state > full state > exstart state 

Answer:

Explanation: 

OSPF states for adjacency formation are (in order) Down, Init, Attempt, 2-way, Exstart, 

Exchange, Loading and Full. 

Reference: 

Why Are OSPF Neighbors Stuck in Exstart/Exchange State? 

http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080093f0d.shtml 


Q62. - (Topic 2) 

Refer to the exhibit. 

When running EIGRP, what is required for RouterA to exchange routing updates with RouterC? 

A. AS numbers must be changed to match on all the routers 

B. Loopback interfaces must be configured so a DR is elected 

C. The no auto-summary command is needed on Router A and Router C 

D. Router B needs to have two network statements, one for each connected network 

Answer: A Explanation: 

Here we required same autonomous system between router A,B,C.Routing updated always exchange between in same EIGRP EIGRP autonomous system.you can configure more than one EIGRP autonomous system on the same router. This is typically done at a redistribution point where two EIGRP autonomous systems are interconnected. Individual router interfaces should only be included within a single EIGRP autonomous system. Cisco does not recommend running multiple EIGRP autonomous systems on the same set of interfaces on the router. If multiple EIGRP autonomous systems are used with multiple points of mutual redistribution, it can cause discrepancies in the EIGRP topology table if correct filtering is not performed at the redistribution points. If possible, Cisco recommends you configure only one EIGRP autonomous system in any single autonomous system. http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080093f07.shtml 


Q63. - (Topic 2) 

What are two drawbacks of implementing a link-state routing protocol? (Choose two.) 

A. the sequencing and acknowledgment of link-state packets B. the requirement for a hierarchical IP addressing scheme for optimal functionality 

C. the high volume of link-state advertisements in a converged network 

D. the high demand on router resources to run the link-state routing algorithm 

E. the large size of the topology table listing all advertised routes in the converged network 

Answer: B,D 

Explanation: 

Link State routing protocols, such as OSPF and IS-IS, converge more quickly than their distance vector routing protocols such as RIPv1, RIPv2, EIGRP and so on, through the use of flooding and triggered updates. In link state protocols, changes are flooded immediately and computed in parallel. Triggered updates improve convergence time by requiring routers to send an update message immediately upon learning of a route change. These updates are triggered by some event, such as a new link becoming available oor an existing link failing. The main drawbacks to link state routing protocols are the amount of CPU overhead involved in calculating route changes and memory resources that are required to store neighbor tables, route tables and a complete topology table. http://www.ciscopress.com/articles/article.asp?p=24090&seqNum=4 


Q64. - (Topic 2) 

Refer to the exhibit. 

Assume that all of the router interfaces are operational and configured correctly. How will router R2 be affected by the configuration of R1 that is shown in the exhibit? 

A. Router R2 will not form a neighbor relationship with R1. 

B. Router R2 will obtain a full routing table, including a default route, from R1. 

C. R2 will obtain OSPF updates from R1, but will not obtain a default route from R1. 

D. R2 will not have a route for the directly connected serial network, but all other directly connected networks will be present, as well as the two Ethernet networks connected to R1. 

Answer:

Explanation: 

Open Shortest Path First http://en.wikipedia.org/wiki/Open_Shortest_Path_First 

The configuration of R1 shows "router ospf 1" however, the diagram also shows that both routers should be in the backbone OSPF Area of "0". When routers are in different OSPF areas they will not form a neighbor relationship. Neighbor relationships As a link state routing protocol, OSPF establishes and maintains neighbor relationships in order to exchange routing updates with other routers. The neighbor relationship table is called an adjacency database in OSPF. Provided that OSPF is configured correctly, OSPF forms neighbor relationships only with the routers directly connected to it. In order to form a neighbor relationship between two routers, the interfaces used to form the relationship must be in the same area. Generally an interface is only configured in a single area, however you can configure an interface to belong to multiple areas. In the second area, such an interface must be configured as a secondary interface. (A neighbor state simulation shows how neighbor state changes from Down to Full Adjacency progressively with exchanging Hello, DD, Request, Update, and Ack packets).